If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20b^2-72b+63=0
a = 20; b = -72; c = +63;
Δ = b2-4ac
Δ = -722-4·20·63
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-72)-12}{2*20}=\frac{60}{40} =1+1/2 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-72)+12}{2*20}=\frac{84}{40} =2+1/10 $
| 9+10x=139 | | -10+m/4=-9 | | (3x-4)(3x-5)=25 | | (3x-4)(3x-5)-25=0 | | x+(x+75)+(x-15)=180 | | x+(4x-14)+(5x)=180 | | 38=-3m+2 | | -21/4=3/4x | | 13x-19=180 | | -5,6g-2,44=13,42g+35,6 | | 46=-8x-18 | | 3h+5=14 | | –3(k+4)–(–4k–9)=–8 | | x+(4x-8)+(5x)=180 | | 6x^2+12x-15=-10 | | 4b^2+5b-6=-7 | | 9,3f-113,74=-3,7f-26,12 | | 5k=-2(1+4k)-7 | | Y=x2+2x-28 | | 7n+15=4n | | 9,2d+46=3,1d-27,2 | | 122=8x+10 | | 5u2–31u+6=0 | | x4+2=5 | | 3-(2-a)=2+3a | | 39=26+10n | | 6e/5+13/3=10e/3+45/2 | | 27=26+10n | | 10-8×=-2x+4x | | 5(a-9)-7(3a+6)=25 | | 12d/5+3/2=10d/3+11/3 | | s+7+3s=2s+12 |